网关做灰度的时候,要控制流量的比例,比如 3:7 的分发流量到两个不同版本的服务上去。刚开始的想法是每次流量过来生成 100 以内的随机数,随机数落在那个区间就转到那个版本的服务上去,但是发现这样无法较精准的保证 3:7 的比例,因为有可能某段时间内生成的随机数大范围的落在某个区间内,比如请求了 100 次,每次生成的随机数都是大于 30 的,这样 70% 比例的服务就承受了 100% 的流量。

接下来想到了第二种解决方案,能够保证 10(基数) 倍的流量比例正好是 3:7,思路如下:

1、生成 0 - 99 的数组(集合)
2、打乱数组(集合)的顺序,为了防止出现某比例的流量集中出现
3、全局的计数器,要考虑原子性
4、从数组(集合)中取出计数器和 100 取余后位置的值
5、判断取到的值落在那个区间

以下是 Java 的简单实现:

package io.github.ehlxr.rate;

import java.util.Collections;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;

/**
 * 按比例控制流量
 *
 * @author ehlxr
 * @since 2019-07-19.
 */
public class RateBarrier {
    private AtomicInteger op = new AtomicInteger(0);
    private List<Integer> source;
    private int base;
    private int rate;

    public boolean allow() {
        return source.get(op.incrementAndGet() % base) < rate;
    }

    private RateBarrier() {
    }

    public RateBarrier(int base, int rate) {
        this.base = base;
        this.rate = rate;

        source = new ArrayList<>(base);
        for (int i = 0; i < base; i++) {
            source.add(i);
        }

        // 打乱集合顺序
        Collections.shuffle(source);
    }

}

以下是 3:7 流量控制的测试:

package io.github.ehlxr.rate;

/**
 * @author ehlxr
 * @since 2019-07-19.
 */
public class Main {
    public static void main(String[] args) {
        RateBarrier rateBarrier = new RateBarrier(10, 3);

        final Thread[] threads = new Thread[20];
        for (int i = 0; i < threads.length; i++) {
            threads[i] = new Thread(() -> {
                if (rateBarrier.allow()) {
                    System.out.println("this is on 3");
                } else {
                    System.out.println("this is on 7");
                }
            });
            threads[i].start();
        }

        for (Thread t : threads) {
            try {
                t.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

    }
}

// Output:

/*
this is on 7
this is on 7
this is on 7
this is on 7
this is on 3
this is on 7
this is on 3
this is on 7
this is on 7
this is on 3
this is on 7
this is on 7
this is on 7
this is on 7
this is on 3
this is on 7
this is on 3
this is on 7
this is on 7
this is on 3
*/

以下是 Golang 版本 2:3:5 比例分流的简单实现:

package main

import (
    "fmt"
    "math/rand"
    "sync"
    "sync/atomic"
)

type RateBarrier struct {
    source []int
    op     uint64
    base   int
}

func NewRateBarrier(base int) *RateBarrier {
    source := make([]int, base, base)
    for i := 0; i < base; i++ {
        source[i] = i
    }

    // 随机排序
    rand.Shuffle(base, func(i, j int) {
        source[i], source[j] = source[j], source[i]
    })

    return &RateBarrier{
        source: source,
        base:   base,
    }
}

func (b *RateBarrier) Rate() int {
    return b.source[int(atomic.AddUint64(&b.op, 1))%b.base]
}

func main() {
    var wg sync.WaitGroup
    wg.Add(20)

    // 2:3:5
    b := NewRateBarrier(10)
    for i := 0; i < 20; i++ {
        go func() {
            rate := b.Rate()
            switch {
            case rate < 2:
                fmt.Println("this is on 20%")
            case rate >= 2 && rate < 5:
                fmt.Println("this is on 30%")
            case rate >= 5:
                fmt.Println("this is on 50%")
            }

            wg.Done()
        }()
    }

    wg.Wait()
}

// Output:
/*
this is on 30%
this is on 50%
this is on 30%
this is on 20%
this is on 50%
this is on 50%
this is on 50%
this is on 20%
this is on 30%
this is on 20%
this is on 50%
this is on 30%
this is on 30%
this is on 50%
this is on 50%
this is on 50%
this is on 20%
this is on 50%
this is on 50%
this is on 30%
*/
— The End —
Last modification:July 19, 2019
If you think my article is useful to you, please feel free to appreciate